

When purchasing high-end inserting systems By Peter Somu and Jeffrey Sutton

n today's high-volume, mission-critical document production environments, few tasks are more daunting than choosing a new inserting system. The range of choices and technologies are vast, and the typical buying decision is about a lot more than the "speeds and feeds" discussions that drove such decisions in the past.

For many, the most difficult decision when choosing a new inserter is to define the functionality that is required. Is the system intended to run a single application very well, or is it required to run several applications equally well? Is the system required to process documents with a minimum of control information, or is it required to operate at the highest levels of integrity? Is it a system designed to work as a standalone device, or is it required to interface with a larger workflow system? Is closed-face addressing or customer messaging required? How will postage be applied, if at all? And how much speed do you need? In this, the first of three articles, we'll look at these questions with the goal of helping you identify what's important for your business needs.

One Application or Many?

The first question that you should be prepared to answer when you're beginning to shop for a new inserter is its intended use — will the machine be dedicated to one job, or will it be required to run many different applications? If an inserter is asked to run the same job day in and day out, issues such as job changeover and setup time become less

important. On the other hand, if the machine is required to run many jobs, changeover and setup time become critical. Inserter vendors have made great strides in the last few years, and some inserters offer automated job setup while others have greatly simplified the job setup process through careful design. If it's important to run multiple jobs, be sure to ask your vendor to describe how their products will simplify your application environment.

How Much Integrity Do You Need?

Inserters have traditionally been controlled by a mark pattern or barcode that is printed somewhere on at least the first page of each statement. An inserter control barcode typically contains enough information to enable the machine to recognize the first page of each document, accumulate subsequent pages of that document and select the appropriate inserts. Many times, this code contains check information to ensure that the correct number of pages have been accumulated within the collation. These systems have worked well for many years now, but some customers, such as those processing under HIPPA regulations, demand a higher level of quality assurance.

Inserter vendors have answered this demand in several ways; some ask that the user augment the barcode or provide a separate data file with account information to create a verification step, others have added multiple integrity checkpoints throughout the chassis of their systems to

ensure that all document sets are positively tracked throughout the inserting process and others have added camera systems, usually to the output stage, to validate some aspect of the finished envelope as it exits the inserter. And in some cases, vendors have applied some or even all three approaches to ensure their systems are operating at the highest levels of integrity. Whatever your quality needs are, today's inserters offer integrity solutions that will ensure you get the right document to the right customer.

Standalone or Workflow?

Traditionally, most inserters have operated on a standalone basis with the control marks or barcode on the document serving as the only link to the outside world. More recently, networked systems have been developed where one or more inserters are networked to a central server to allow for improved reporting and in some cases, for the control information usually contained printed on the page to be fed to the inserters on a piece level basis.

There are several advantages to this approach, whether the systems are simply networked or are data-driven. First, networked systems can report piece-level data to a central server to enable advanced reporting and account reconciliation either on a job or individual mailpiece level. Database-driven systems combine production control with the flexibility to uniquely finish each mailpiece with a minimum of printed control information. Each mailpiece is then finished according to a unique set of instructions generated as the document is completed according to piece-level instructions, and rich data on jobs; operators; mailpieces; and even media such as forms, envelopes and inserts is gathered during production.

Additionally, database-driven systems enable the inserters to become a component of a larger system; when data generated during the document production is open and easily shared with other devices and workflow systems, it is possible to create a process-based, zero-defect capable system that extends from document composition to document finishing to postage management to CRM systems and even to USPS postal systems.

Closed-Face Addressing and Envelope Messaging

One by-product (or even a driver) of today's high-integrity inserting systems is the ability to apply an address to the outside envelope at insertion run-time. Using data provided either in a file or available in a database, an inkjet printer sprays the address and/or other information on the outside envelope. As an example, it is possible to apply a return address, a graphic logo, a mailing address as well as a personalized message — if you don't mind using a lot of ink, that is!

The benefits are numerous. By moving the address from the first page of the customer communication piece, you can free up a significant amount of white space for targeted messaging. Additionally, security is enhanced as the need for an open window is eliminated. And for those in certain industries where the return address or company logo must change based on agent location. For example, the ability to print a return address "on the fly" offers the benefits of longer runs and greater postage discounts through merging smaller runs into a larger production stream.

There are two main types of inkjet systems used today: those based on large industrial inkjet printers and those based on HP cartridge inkjet technologies. Both offer compelling benefits; the industrial printers can run at very high speeds, while the HP-based systems are very flexible and are extremely easy to service as the print head and ink cartridge are integrated together. Whichever you choose, be sure to ask your vendor about consumable costs as the cost of ink may be greater than the cost of the printer when measured over the life of the inserter.

Evidence of Postage

With today's fastest inserters running at speeds up to 26,000 cycles per hour, it's become more difficult to meter envelopes inline than in the past. New meters capable of running production mail applications at speeds of up to 22,000 cycles per hour have just begun to appear. The good news is that they are also capable of switching between postage weight rates at speed, so they are more capable than the older generation of mechanical meters.

One alternative that is increasingly gaining popularity is postal manifesting, especially when combined with database-driven, close-faced addressing or envelope messaging systems. And if you've already identified integrity as a key requirement, no other system of applying postage will give you a positive, piece-level record of each mailpiece like postal manifesting can.

What about Speed?

With a new class of fast inserters running in the 22,000-26,000 cycle per hour range, many users are tempted to replace several slower legacy systems with significantly fewer high-speed machines. Many have successfully made this leap in their shops, but most have found that there are significant challenges to overcome to gain maximum productivity. Issues such as logistical efficiency, operator ability and the impact of unscheduled downtime all must be carefully managed to get the best out of today's most advanced systems. In next month's article, we'll look at the these issues and more in greater detail... after all, it's not how fast you go but how quickly you arrive at the finish line that wins the race!

Peter Somu and Jeff Sutton are principles with Zen Systems, which has years of experience working with industry leaders like Pitney Bowes, Böwe Bell & Howell, Kern and Xerox Corporation in support of their most critical customers. Contact the authors at contactus@zensys.com or by phone at 504-288-6202 or 908-369-0225.